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Abstract

Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous
pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas
turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user
to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural
networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in
machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values
( and because
o the fuel cell
i cell while
t for the cell
i ters such as
t discussed.
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inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns
f their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of

s modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel
he outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters
nclude the geometrical configuration as well as the operating conditions. For the neural network, various network design parame
he network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are
esults from the analysis as well as the limitations of the approach are presented and discussed.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Ever since the birth of the power generation industry there
as been a need for efficient and clean generation of electrical
nergy that can cope with the increase of power demand, and

he adverse forecasts of fuel supplies. Fuel cell technology
as proven to be a technology capable of assisting such an
ffort [1,2] either as a stand-alone technology[3] or by com-
ining with Turbomachinery equipment[4,5]. Their cost may
till be prohibitive and a hydrogen production infrastructure
n its infancy but their inherent advantages, such as low emis-
ions and very high conversion efficiencies, as well as the low
aintenance requirements due to the absence of moving or

otating parts make them an attractive possibility.

∗ Corresponding author. Tel.: +44 1235 750 111; fax: +44 1234 751 232.
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On the other hand„ the sphere of application of A
has grown covering such endeavours of life as medi
finance and engineering amongst others. In engineering,
of application includes single sensor fault identification
industrial power plants[6], diagnosis of sensor and co
ponent faults in gas turbines[7], signal validation, contro
and diagnostics in nuclear power plants[8], mechanical roto
system unbalance[9] and a machine tool monitoring in me
cutting processes[10]. Recently[11], the application of ANN
in predicting the stack voltage of a proton exchange m
brane fuel cell (PEMFC) was considered. In their anal
four parameters namely stack current, stack tempera
hydrogen and oxygen flow were used as input to the net
with the stack voltage being the only output.

Essential for the proper evaluation of fuel cell tech
ogy and simulation processes, in general, are perform
models, which will allow for the investigation of the oper
ing characteristics either on a stand alone basis or as p

378-7753/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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Nomenclature

A area (m2)
ANN artificial neural network
F Faraday’s constant (C mole−1)
�G Gibbs free energy
�H enthalpy change
HL hidden layer
I current density (A m−2)
IL input layer
l length (m)
LHV lower heating value (kJ mole−1)
m mass flow rate (moles s−1)
MSE mean square error
n number of electrons
OL output layer
p̄ partial pressure (bar)
P pressure (bar)
r universal gas constant (J kmole−1)
R air ratio (%)
Ranode anode activation polarisations
Rcathode cathode activation polarisations
�S entropy change
SOFC solid oxide fuel cell
T cell temperature (K)
Uf fuel utilisation (%)
Uo air utilisation (%)
VG Gibbs cell potential (V)
Vcell deliverable cell potential (V)
W cell power (W)

Subscripts
a anode
c cathode
el electrolyte
G Gibbs
N Nernst

Greek letters
η cell thermal efficiency (%)
σ standard deviation

cycle where other components will be involved. Further with
computational time being one of the major issues in simu-
lation efforts, artificial intelligence can be implemented in
order to reduce assessment period.

2. Fundamentals

2.1. Solid oxide fuel cells

A fuel cell is a device that converts the chemical energy of
hydrogen or hydrogen containing fuel, such as a hydrocarbon,
alcohol or other, to electricity by means of an electrochemical

reaction. A major distinction between fuel cells and other
devices delivering electricity, such as heat engines, is that
only a single energy conversion step is needed. That is, the
chemical energy is converted directly to electricity with heat
produced only as a by-product. The main components of a
cell, as shown inFig. 1, are the two electrodes, each covered
with a thin layer of a catalyst, and the electrolyte positioned in
between them. Fuel is supplied to the anode electrode, while
oxygen or air is fed to the cathode electrode. The electrolyte
serves the function of isolating electronically the electrodes
anode and forming an ionic bridge between them.

The material commonly used for the electrolyte is zirco-
nia dioxide (ZrO2), doped with 8–10 mole% yttria trioxide
(Y2O3). The final name of the electrolyte is yttria stabilised
zirconia (YSZ). The anode material is Ni showing high elec-
trochemical activity for the hydrogen oxidation reaction. To
Ni a composite material similar to the one used for the elec-
trolyte, i.e. yttria stabilised zirconia is added in order to
adjust the thermal expansion coefficient of the anode and the
electrolyte with the final product called Ni–yttria stabilised
zirconia cermet. Finally cathodes, material is based on the
perovskites lanthanum manganite with the La being replace
with by strontium yielding strontium (Sr) doped lanthanum
(La) manganite (Mn), i.e. LaSrMnO3.

During operation, oxygen atoms interact with the cata-
lyst on the cathode electrode and as a consequence oxygen
i s the
a n pro-
d ane,
a ogen
a trical
c n the
v m-
b that
i by
t lec-
t fuel
a

cell
o ely
ons are formed and travel through the electrolyte toward
node. There they react with the hydrogen that has bee
uced by the reforming and water shift reaction of meth
nd form water. The electrons released from the hydr
toms reach the cathode by means of an external elec
onnection, i.e. the load. The operating temperature is i
icinity of 1000◦C. Clearly, the operation of fuel cells rese
les the operation of a battery with the difference being

n a battery the amount of electricity generated is limited
he quantity of reagents stored in it while in fuel cells e
ricity is continuously produced as long as oxygen and
re fed to the electrodes.

The three physical processes that occur during the
peration are described with the following equations, nam

Fig. 1. SOFC schematic.
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the reforming process, the water shift reaction and the com-
bustion of hydrogen.

CH4 + H2O → CO + 3H2 (1)

CO + H2O → CO2 + H2 (2)

H2 + 0.5O2 → H2O (3)

Since the analysis is taking place under isobaric conditions
the Gibbs free energy expresses the theoretical maximum
available energy in the process.

�G = �H − T�S (4)

And so the theoretical maximum potential can be derived.

VG = −�G

nF
(5)

whereF is the Faraday’s constant (=96,486 C mole−1) andn
is the number of electrons involved in the process, two for
the case of a SOFC.

Further, the open cell potential (Vcell) or otherwise called
Nernst voltage (VN) has to be computed in order to take into
account the effect of pressure and temperature

V
RT

(
pH2O

)
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t hich
m bar-
r tion,
w ronic
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a ing
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L lec-
t trons
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increase as the current increases. Ohmic resistance is obtained
by use of the following correlation:

Rcomponent= lcomponentAcomponente
−Bcomponent/T (9)

The final voltage delivered by the cell is a function of three
parameters, the maximum theoretical voltage, the open cell
voltage and the polarisation losses

Vcell = VN − I(Ractivation+ ROhmic) (10)

The power output of the cell is expressed as a function of
operating current density and voltage

Pcell = IVcellA (11)

Finally, the efficiency is defined as the desired output, i.e.
power over the required input, i.e. fuel flow:

ηth = Pcell

m LHV
(12)

2.2. Artificial neural networks

Neurobiology estimates the human brain to consist of 100
billion nerve cells or neurons[12]. Biological neurons have
three principal components: the dendrites, the cell body and
the axon. On the other hand, a typical artificial neuronal
model is comprised of weighted connectors, an adder and
a

odel
i

n

a

w l,
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eu-
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t pli-
t take
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t ties
b t
N = VG −
nF

ln
pH2

√
pO2

. (6)

n the same way, heat engines never reach their maxi
heoretical efficiency due to irreversibilities so do fuel c
s a consequence of internal resistances called polari
ffects which come principally in two main groups: activat
nd Ohmic.

During operation, in the region next to the electro
n electric field is formed which influences the motion

he ions. Electrochemical reactions involve barriers, w
ust be overcome by the reacting species. This energy

ier is called activation energy and results in polarisa
hich is due to the transfer of charges between the elect
nd the ionic conductors. The activation polarisation
e regarded as the extra potential necessary to overcom
nergy barrier of the rate-determining step of the reaction

ast reaction rates and small currents, activation polarisa
re relatively insignificant but as the rate of reaction sl
own and the current increases they tend to increase. A
nd cathode activation polarisation is given by the follow

ormulas:

1

Ranode
= Kanode

2F

RT

(
pH2

p

)0.25

e−Eanode/RT (7)

1

Rcathode
= Kcathode

4F

RT

(
pO2

p

)0.25

e−Ecathode/RT (8)

ike all conducting materials, the electrodes and the e
rolyte of cell posses an electric resistance either to elec
r to ions yielding to Ohmic polarisations, which tend
transfer function (Fig. 2).
The basic relationship as displayed by this neuronal m

s:

= wp + b (13)

= F (wp + b) = F (n) (14)

herea is network output signal,w weight of output signa
input signal,b neuron specific bias,F transfer/activatio

unction,n induced local field or activation potential
From Eqs.(13)and(14), it can be seen that a simple n

on performs the linear sum of the product of the syna
eight and input with the bias which value is then pas

hrough activation or transfer function that limits the am
ude of the output of a neuron. Activation functions can
arious forms ranging from hard limit, through pure
ar to sigmoid and the choice of which to use depend

he desired output from the network. Two key similari
etween biological and artificial networks[13] are the fac

Fig. 2. A single neuronal model.
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that their building blocks are highly interconnected compu-
tational devices though the artificial neurons are inferior to
their biological counterparts and also that the function of the
network is determined by the nature of connection between
the neurons.

Three fundamental network architectures are popular,
viz. single-layer feedforward networks, multi-layer feedfor-
ward networks and recurrent networks. The single layered
networks have very limited uses while recurrent networks
are popular with control systems. However, multi-layered
networks have been used in various applications includ-
ing those mentioned earlier. In this paper, the networks are
defined according to the number of layers (including the input
parameter layer) with the number of neurons in each layer.
Thus, a multi-layered feedforward network defined as 7-5-
5-4 implies seven input parameters; five neurons in the first
layer; five neurons in the second layer and four neurons in
the third layer (which also indicates the number of parameters
whose values are being modelled).

The steps involved in obtaining an appropriate back prop-
agation feedforward network (BPNN) as an instance are:

• Assess the problem to be solved in a bid to seek the possi-
bility of discretising it.

• Generate training and test data. Input and output delta
variables used in training and testing the networks could

d
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Fig. 3. A two-hidden layered feedforward network.

• Steady-state conditions;
• all three reactions, i.e. reforming of methane, water gas

shift and hydrogen electrochemical combustion reach
equilibrium;

• the electrochemical oxidation of carbon monoxide was not
favoured in the operating temperature to the degree the shift
reaction did;

• cell operated under adiabatic conditions;
• anode and cathode exit temperature are equal to the cell

operating temperature;
• pressure losses are taken as fixed with a drop equal to 5%

of inlet pressure.

The model carries out a thermo-electrochemical analysis
of the cell where the power output is computed along with the
enthalpy change between inlet and outlet. Results are fed into
the energy balance equation and with the help of the secant
method convergence is reached and the final operating point
is found.

On the other hand, the ANN model used in simulating the
performance of the SOFC is akin to that shown inFig. 3.
Seven input and four output variables shown inTable 1were
considered. Scaled conjugate training algorithm was used and
a sigmoid transfer function (hyperbolic tangent) used on all
layers. With prior knowledge of the number of input and

T
N

ne

I

O

be computed from:

�Z = Z − Zestbaseline

Zestbaseline
× 100 (15)

whereZestbaselineis the established baseline condition anZ
is the measured or calculated value. Network input and
put data based on deviation from a common baseline a
for equal representation of all parameters in determi
connection weights especially in cases where the m
tudes of these parameters vary widely from one anot
Training the network. The training process juggles t
weights and biases to obtain the set that optimises
formance via reduced errors and good generalisation
weight adjustment (noting that BPNN operates on the
dient descent technique) is done via the relation:

�wij(k) = β

(
−∂E(k)

∂wij

)
+ α�wij(k − 1) (16)

whereE is the difference between the outputs and the
gets for thekth input otherwise called the “error” to b
minimised,w the connection weight,β andα are the learn
ing rate and momentum constants, respectively.

. Methodology

For the purposes of the study, a simulation mode
ortran 90, based on the open literature[14,15] was used

o analyse the performance of a SOFC, with the follow
ssumptions taken into consideration.
able 1
etwork I/O parameters and ranges

Range considered Baseli

nput
P (bar) 1–5 1
I (A m−2) 500–8000 3000
Uf (%) 0.83–0.87 0.85
Uo (%) 0.24–0.28 0.26
Ta (K) 700–900 900
Tc (K) 700–900 900
utput
T (K) 1209.65
V (V) 0.5889
W (W) 17.67
η (%) 47.971
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Table 2
Electrochemical coefficients

Aa (� cm) 0.00298
Ael (� cm) 0.00294
Ac (� cm) 0.008114

Ba (K) 1392
Bel (K) −10350
Bc (K) −600

Ka (A cm−2) 2.13E4
Kc (A cm−2) 1.49E4

Ea (kJ mole−1) 110
Ec (kJ mole−1) 160

output variables, the number of neurons in the IL and OL are
defined, thus the optimal network was obtained by varying
the number of neurons in the HL.

Table 1presents the range of the input parameters used
to evaluate the performance of a solid oxide fuel cell and to
train the artificial neural network.

Furthermore, the values for the various coefficients are
presented inTable 2.

4. Results and discussion

Four parameters were of primary interest in the perfor-
mance of the cell, namely the operating voltage of the cell,
the operating efficiency, the power output and the tempera-
ture generated. The graphs (Figs. 4–7) present results from the
analysis carried out with the simulation code and the trained
neural network. It can be seen that overall the discrepancies
are negligible and only on certain occasions can one distin-
guish between the two approaches.

For the first parameter, i.e. voltage it has been observed
that as more current is drawn from the cell as less potential
is delivered until eventually it collapses. The critical point,
not shown inFig. 4, lies at around 11,000 A m−2 where the
voltage falls to 0.3 V. As previously mentioned, the perfor-
mance of the cell resembles the operation of a battery and the
s

Fig. 5. Power vs. current.

Fig. 6. Temperature vs. current.

The next parameter was cell power. It is obvious from
Eq. (11) and the graph that the more current is drawn, for a
constant cell area and even though the voltage is decreasing,
the power is increasing.

Then the operating temperature was looked at showing an
increasing trend as more current is drawn. This is due to the
fact that more fuel is fed to the cell and as a result the fraction
of energy not converted into electrical work increases the
operating temperature.

Fig. 7. Efficiency vs. current.
imilarity in the trend is similar.

Fig. 4. Voltage vs. current.
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Table 3
Training/test network performance

Architecture Training MSE σ error from prediction

T V W η

7-5-5-4 8.2× 10−6 0.03 0.66 0.65 0.55
7-10-10-4 1.3× 10−6 0.01 0.22 0.22 0.22
7-30-30-4 8.6× 10−7 0.01 0.16 0.18 0.17

The final parameter of interest was efficiency. The
inversely proportional relationship that is shown in the graph,
relative to current density is due to the fact that at higher cur-
rents there is an increase in the cell polarisation losses.

On a neural network basis a comment that should be made
is that of the number of possibilities considered, the perfor-
mance of three network architectures, the first two randomly
selected, are shown inTable 3.

The performance of a network is not only dependent on
the mean square error (MSE) achieved during training but
also on the networks ability to generalise (apply knowl-
edge gained during training) from data, it has previously not
been exposed to. Thus with theσ (standard deviation) val-
ues obtained during prediction of the output parameters, the
7-30-30-4 network architecture provided sufficiently accu-
rate results for the intended purpose and was thus adopted. It
should be noted that the results reported for the ANN were
obtained from tests under different operating conditions but
within the range reported inTable 1.

One question that could be stirred up from this research is:
why use ANN when the SOFC algorithm performs creditably.
In addressing this we note that firstly, there could arise scenar-
ios where physical relationship between parameters are not
perfectly known, secondly the speed of data processing espe-
cially for a large number of cases may be an issue. In these
respect amongst others, the verification of the applicability
o as
A ela-
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f er
m
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ation
m ence
t g of
a from
t
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• Fuel cell technology shows very good performance char-
acteristics, in particular with respect to efficiency, and can
help in the general effort for better power generation.

• Artificial intelligence and specifically artificial neural net-
works can be trained to simulate the performance of a cell
with great accuracy; consequently, the same concept could
be extended to other components and thus bigger and more
complex cycles can be simulated at reduced time.

• ANN is currently applied in various fields such as
medicine, predictive regimes and engineering diagnostics.
Though the time to set up an ANN system may be long,
we, nonetheless, recommend that potential benefit accru-
able from its incorporation into fuel cell modelling and
analysis be further explored.
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